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CURRENT DISTRIBUTION IN A PLASMA EROSION OPENING SWITCH

The Plasma Erosion Opening Switch (PEOS) consists of a low density

10 i13 cm-3) plasma injected across a vacuum feed line in a pulsed power

generator. The PEOS can conduct high current (-. MA), open quickly ((10 ns),

and withstand high voltage (%MV). This switching technique has been used in

* inductive energy storage experiments demonstrating pulse compression, voltage

multiplication and power multiplication. 1  The PEOS is used routinely at

several laboratories for other types of power conditioning including prepulse

2 3 4
suppression, pulse sharpening and multimodule jitter reduction. In this

letter the current flow pattern in a PEOS plasma is determined from magnetic

field probe measurements. The current channel in the PEOS plasma broadens as

the current through the switch increases. The current channel is wide,

inferring an anomalously high resistivity. The measured current"/pe'
channel width is consistent with a theoretical model that predicts a current.

density limitliuqposed by the ion flux to the cathode. Switching occurs when a

*gap is formed between the plasma and the cathode.

The Gamble I generator 5 at the Naval Research Laboratory is configured

* with a PEOS system and a short circuit load as shown in Fig. 1. Three plasma

guns6 inject a carbon plasma into the region between the screen and the

cylindrical center conductor. The generator is fired about 1.5 us later,

applying a negative high voltage pulse (-1 MV, 50 ns FWHM) to the center

conductor. Currents on the generator (16) and load (10) sides of the switch

are plotted in Fig. 2. The current through the 180 nHl storage inductance and

PEOS plasma increases to 150 kA in 40 ns, while IL remains small. During the

next 10 ns, IL increases to 200 kA and the switch current (16-IL) becomes

small, indicating the switch is open.
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Five small probes are used to measure the local magnetic field in the

PEOS during fast opening shots. The probes are potted inside 5 mm diameter

quartz tubes and inserted into the switching region through the screen. The

azimuthal field, Be(t), is measured at the locations shown in Fig. 1. Five

axial (z) locations are sampled on a single shot, at the same radial (r)

location. The probes are moved to different radial locations to scan the

cross section. The probes are calibrated relative to the Rogowski loops that

measure I and IG , using data from shots with no plasma injection. In thisLG I~

case, I = IL and

I (kA) = 5r(cm) B6(kG). (1)

Eq. (1) holds if Be is azimuthally symmetric, and gives the total current

through a circle of radius r. Measurements of B.(e) during fast opening shots

indicate that B Is reasonably symmetric (±5%) so that Eq. (1) can be used to

approximate the current distribution In the plasma.

Probe data, Bx5r(kA), are plotted as a function of time in Fig. 3 for

r * 3, 4 and 5 cm. The corresponding load currents are shown In Fig. 2. The

uncertainty in the measurements due to digitizing, calibration, probe

orientation and timing is estimated to be t 20 kA. Experimentally, the probes

do not perturb the plasma. The presence of the probes does not affect the

measured currents IG and IL , and the signal obtained from a given probe is

independent of the location of other probes.

The data in Fig. 3 are used to map out current streamlines in the PEOS

plasma before, during and after opening. Two times before opening are marked

by arrows in Fig. 2 at t - 16 and 36 ns. These times correspond to the first

nonzero points of the r - 5 cm probe signals at z • 4 and 6 cm which identify

the downstream edge of the current channel. The width of the current channel

is determined by comparing adjacent probe signals. For example, at

2



t - 36 ns the downstream edge of the current channel is at r - 5 cm, z = 6 cm.

The 130 kA generator current is divided between z 2 2 and 6 cm with 100 kA

between z = 4 and 6 cm. The probe data in the rest of the r-z cross section

determine the current channel between the outer and inner conductors, shown in

Fig. 4. Data taken at IL - 100 and 200 kA, shown by arrows in Fig. 2,

determine the current streamlines during and after opening. Dashed lines in

Fig. 4 show possible streamlines outside the data grid, consistent with the

* measured current IL-

Figs. 4(a) and (b) show that current is conducted radially from the outer

conductor to the inner conductor through the plasma. The current channel

broadens quickly; after 36 ns the width of the current channel is about 4

cm. An effective resistivity can be calculated from this data using

n- p x /t, (2)

where n is the resistivity in ohm-cm, zo 41x 1011H/cm, t (cm) is the

current channel width and t(s) is the penetration time. Using x= 4 cm and

t 36 ns, A S6 ohm-cm, which is three orders of magnitude larger than the

transverse Spitzer resistivity7  (for Te- 5eV). Buneman and ion-acoustic

Instabilities are possible causes of the enhanced collision frequency

( ~10 S) The current channel width is much larger than the

collisionless skin depth; C/we = 0.1 cm for ne = 3 x 1013 cm"3 (measured with

an electric probe8 ).

A theoretical model of the PEOS that accounts for the observed switching

behavior has been developed.9  In this theory, current is conducted in a

bipolar, space-charge-limited fashion across a small gap at the cathode side

of the PEOS. The maximum current that the PEOS can conduct (without opening)

. . . . . .. *. .. *. . . .. . .• .. . . . . . . ° . . . . • * *.. .. • . -- . .. .. .
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is determined by the flux of ions to the cathode. The ion flux density is

ri = nivD9 (3)

where ni is the ion density and vD is the average ion drift velocity toward

the cathode. The ratio of electron to ion current density across the gap (for

the non-relativistic case) is

je/ji= (Mi /Zme) (4)

where me (Mi) is the electron (ion) mass and Ze is the ion charge. The

current through the plasma can increase until Ji " riZe. A further increase in

current causes the cathode gap to open, effectively increasing the ion

current. This process is termed erosion of the plasma. During the erosion

phase current begins to flow to the load. When the magnetic field in the gap

is large enough to begin magnetic insulation of the cathode electrons, the ion

current is larger than the value predicted by Eq. (4), similar to the

enhancement that occurs in ion diodes.10 This enhanced ion current causes the

gap to open faster, accounting for the observed fast switching. With this

large gap, the switch current is effectively cut off due to magnetic

insulation of the electrons, leaving only a small ion current flowing across

the gap.

The broadening of the current channel can be explained by this model,

because the ion flux imoses a current density limit at the cathode during the

conduction phase. If the current increases with a constant ion current

density, Jim r Ze, the current channel at the cathode will broaden.

Using Eqs. (3) and (4), the electron current density limit is:

4
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je (nivDe(ZMi/me)J' /2 " (5)

The plasma ions are mostly C++, 8 so that ji/j e  0.01, and the expression in

Eq. (5) approximates the total current density, j - j An equation for thee

current channel width, x(t), is found using I=21r j, where rc is the cathodeC 
•

radius and I is the total switch current. Solving for L gives

.. 1/2
l(t) emi}I/ "

"(t) * 2i4nv~e • (6)

Ic

For the Gamble I experiment, Z = 2, ni =1.5 x 1013 cm 3 and vo  6 x I06

cm/s. 8  Eq. (6) then predicts Z 1 cm when I = 37kA, L= 3 cm when

I 130kA. This is consistent with the measured current channel width in the

plasma [Figs. 4(a) and (b)]. Some deviation from this simple calculation is

expected because of the known nonuniformity in ri(z) along the 6 cm switch

length.8 Enhanced plasma resistivity would allow the current channel width in

the plasma to follow the width of the current channel at the cathode. This

resistivity may be the result of instabilities caused by high velocity

electrons from the cathode that stream past the plasma ions.

The current channel is accelerated in the z direction because of jxB

forces during the 40 ns conduction period. The plasma boundary on the

generator side of the PEOS is near z - 0 before the generator is fired. This

boundary evidently moves 2 cm in the axial direction (Fig. 4) while the front

of the current channel moves 6 cm (because of diffusion) in the same time

period.

Figs. 4(c) and (d) show that the current is diverted to the load when the

current path is disrupted near the inner conductor. This is attributed to the

5-.
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increasing radial gap between the plasma and the cathode. The mechanism for

gap formation is assumed to be erosion of the plasma and not magnetic

pressure; magnetic forces in the radial direction are small between t = 36 ns

and 46 ns (Fig. 4). After opening, a large fraction of the current continues

to flow through the plasma. These plasma currents decay in about 100 ns (Fig.

3), a much longer time than the observed penetration time. This decrease in

resistivity is consistent with magnetic insulation of the emitted cathode

electrons which no longer drive instabilities in the plasma. The small gap

size (<0.5 cm) indicated in Fig. 4(d) is due to the low impedance load used in

these experiments; numerical modeling shows much larger gap formation when

finite impedance loads (diodes) are employed.

The magnetic field measurements presented here give a picture of the

current flow pattern in a PEOS. The current channel through the plasma

broadens rapidly and becomes much larger than the skin depth, c/pe. The
pe

*inferred resistivity Is anomalously large. The channel width is consistent

with a current density limit determined by the ion flux to the cathode. Rapid

switching occurs when a gap opens at the cathode side of the PEOS. Radial jxB

forces are small at the time the gap opens, so erosion of the plasma is

assumed to be the dominant opening mechanism. After opening, current

continues to flow through the plasma but magnetic insulation prevents electron

conduction across the gap.

The authors would like to acknowledge the technical assistance of P. Bell

and discussions with Shyke A. Goldstein and R. Kulsrud. This work was

supported by the Defense Nuclear Agency, the U. S. Department of Energy and

the Office of Naval Research.
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Fig. 2 - Current Measurements: Three load currents (IL) and one generator current (IG) are shown,
illustrating the fast opening property of the PEOS. The IL measurements are for different radial

* locations of the probe array. The four L values marked in the figure are analyzed to determine the
* current distribution.
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Fig. 4 - Current streamlines through the plasma are drawn (using the data in Figure. 3), at the four
times indicated in Figure 2. Each dlagram shows the I and IL values (in kA). (a) and (b): Current is
conducted in the radial direction over a broad channel while the PEOS is "cloed" (c) The current is
diverted to the load near the downstream end of the switch region. (d) The current flows through the
plum within 0.5 cm of the inner conductor.
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